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Abstract The Schrödinger Coulomb Hamiltonian for
electronic and nuclear motion in a diatomic molecule is pre-
sented and its effect upon functions which are products of
functions of electronic and of nuclear variables is explicitly
exhibited. Computational approaches to finding approximate
solutions in such a basis are outlined.

1 Introduction

The Coulomb Hamiltonian operator for a system of N
electrons and A atomic nuclei may be written as
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This operator is essentially self-adjoint and bounded from
below. It has, however, a completely continuous spectrum
[0,∞]. The fact that it is completely continuous is because
of the centre-of-mass motion and to see any discrete spectrum
this motion must be removed as

H = h̄2

2MT
∇2(ξ)+ H′ = Tξ + H′ (2)

where ξ denotes the three-component cartesian coordinate of
the centre-of-mass and MT is the total mass of the system.
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Since the centre-of-mass variable does not enter the
potential energy term, the centre-of-mass motion may be sep-
arated off completely so that the eigenfunctions of H are of
the form

T (ξ)�(t) (3)

where �(t) is a wavefunction for the Hamiltonian H′(t)
which we will refer to as the translationally invariant
Hamiltonian. The N + A − 1 coordinates ti are themselves
translationally invariant and are typically chosen as a set of
inter-particle distance vectors. The translationally invariant
Hamiltonian is that which we must use when considering the
separation of nuclear from electronic motion.

There are infinitely many possible choices of translational-
ly invariant coordinates, so that the form of H′ is not
determined, but whatever coordinates are chosen the essen-
tial point is that all H′ have the same spectrum. More detailed
accounts of the spectral properties of the Coulomb Hamil-
tonian that will be cited below can be found in [1,2] and
briefly but fully in [3]. It is the fact that the Coulomb poten-
tial, though unbounded, is small compared with the kinetic
energy, that enables many of results to be proved. Interest-
ingly enough, equivalent results in classical mechanics are
not generally provable.

As a basis for quantum chemical calculations it is usually
assumed that as a first step, electronic wave functions may be
computed as solutions of the electronic Hamiltonian formed
by allowing the nuclear masses in (1) to increase without
limit:
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and in practice the distances rig are considered as functions
only of the electronic variables because the nuclei are con-
sidered to be clamped to yield a definite nuclear geometry for
a calculation. The Hamiltonian is then perfectly well defined
as a self-adjoint operator and the nuclear repulsion opera-
tor is simply an additive energy origin which plays no part
in the dynamical problem. The Hamiltonian has very simi-
lar spectral properties to that of an atom or ion. However, if
the nuclear positions are treated as variable and hence the rig

and rgh as multiplicative operators involving the nuclear vari-
ables, then the Hamiltonian ceases to be well defined because
it contains no kinetic energy operators that can dominate the
nuclear potential terms. The practical consequences of actu-
ally trying to let the nuclear masses increase without limit
to produce an electronic Hamiltonian without clamping the
nuclei seem to have been first investigated in the case of the
hydrogen molecule ion-like system by Frolov [4]. He showed
that what he called adiabatic divergence occurred in the spec-
trum, which is the expected consequence of the failure of the
Hamiltonian to remain well defined. This failure is quite gen-
eral and leaves open to question any attempt to justify the the
Born–Oppenheimer approximation by invoking solutions to
the electronic problem of the form

Helecψ(r,R) = Eelec(R)ψ(r,R) (5)

where it is assumed that the distances rig yielding the nuclear
geometry variables R are multiplicative operators. In fact
the problem can be properly specified only in terms of fixed
choices of R and then by employing the theory of fiber bun-
dles to cover the full space. This was first shown in the work of
Combes and Seiler on the Born–Oppenheimer approximation
for diatomic molecules [5] in the 1970s.

The enormous difference in mass between electrons and
nuclei make it seem sensible to attempt solution of the prob-
lem by first treating the nuclear geometry R as a parameter for
the description of the electronic motion specified in terms of
the variables r and then using the results of the electronic cal-
culations to provide a potential for nuclear motion. Although
it might seem natural to attempt this starting with the classi-
cal electronic Hamiltonian (4), it is not really a satisfactory
starting point. The energies and wavefunctions that result
from its solution depend on the nuclear geometry only and
not on the totality of nuclear variables. They are thus speci-
fied completely in terms of 3A − 6 variables or 1 variable in
the case that A = 2. It is thus necessary to “invent” 6 (or 5)
more variables to tie this part of the problem to the full prob-
lem to be solved. The full problem would seem to offer no
clues about how these required variables should be invented,
except that they should be specified entirely in terms of the
nuclear variables. On the other hand it is perfectly possi-
ble to transform the original Hamiltonian to yield a form in
which the electronic motion is still recognizable and thus
can be isolated to yield a base problem, and in which the

relationship of the electronic part to that of the full problem
is completely specified. This can be done by first specifying a
set of translationally invariant coordinates that allow the sep-
aration of the translational motion to yield the Hamiltonian
H′ whose solutions are well defined. Then a coordinate frame
can be embedded in the molecule by means of an orthogonal
transformation specified in terms of three Euler angles leav-
ing a set of 3A − 6 (or 1) internal variables which specify
the nuclear geometry and are invariant under any orthogonal
transformation of the original variables. Such a strategy is
discussed in what follows in the case of a diatomic molecule.

2 The diatomic Hamiltonian

2.1 A form invariant under uniform translations of
coordinates

In considering the diatomic molecule, for clarity of exposition
consider first the construction just of a translationally invari-
ant kinetic energy operator. A natural translationally invariant
coordinate is the inter-nuclear distance vector

tn = xa − xb (6)

where the laboratory nuclear coordinates are denoted xa and
xb with masses ma and mb and charges Za and Zb. There
is however no equally natural set of translationally invariant
electronic coordinates. A possible choice is

ti = xi + vai xa + vbi xb, i = 1, 2, . . . N , vai + vbi = − 1

(7)

where xi is the laboratory coordinate of the i−th electron.
The inverse transformation is

xa = mb M−1tn + X

xb = −ma M−1tn + X (8)

xi = ti + (mavbi − mbvai )

M
tn + X

where M = ma + mb and X = M−1(maxa + mbxb).
The centre of mass coordinate is

XT = X + m

MT

N∑

i=1

ti + m

MT M

N∑

i=1

(mavbi − mbvai )tn (9)

where m is the electron and MT the total mass.
For any choice of translationally invariant coordinates the

part of the Hamiltonian involving the centre of mass motion
may be separated off and the remaining operator consists of
a kinetic energy operator in three parts and a potential opera-
tor. The kinetic energy operator will have the same structure
no matter what set of translationally invariant coordinates is
chosen, given that a distinction is to be made between elec-
tronic and nuclear coordinates. However, the details, such as
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reduced masses, will vary according to the choice. The form
of the potential operator will depend entirely on the choice.
Choosing the translationally invariant coordinates as in (6)
and (7) the kinetic energy operator becomes

Ke(t)+ Kn(tn)+ Ken(tn, t) (10)

Here, using �∇ as the usual vector gradient operator,

Ke(t) = − h̄2

2m

N∑

i=1

∇2(ti )− h̄2

2

N∑

i, j=1

1

µi j

�∇(ti ) · �∇(t j ) (11)

1/µi j = (vaivaj/ma + vbivbj/mb) (12)

and

Kn(tn) = − h̄2

2µab

�∇2(tn) (13)

in which µab is just the standard reduced mass mamb/

(ma + mb).
Finally

Ken(tn, t) = − h̄2

2
( �∇(tn) ·

N∑

j=1

1

µ j

�∇(t j )

+
N∑

j=1

1

µ j

�∇(t j ) · �∇(tn)) (14)

with

1

µ j
= vaj

ma
− vbj

mb
(15)

Although the sign of this inverse reduced mass (15) depends
upon the arbitrary choice made in labeling the nuclei, the
other choice would result in the chosen form for tn being
replaced by its negative, leaving (14) invariant as required.
This operator vanishes when the elements on the right in (15)
are equal for all j = 1, 2, . . . N .

The inter-particle coordinates needed to form the potential
operator are

xi − x j = ti − t j + M−1(ma(vbi − vbj )− mb(vai − vaj ))t
n

= ri j (t
n) (16)

xi − xa = ti + M−1(mavbi − mb(vai + 1))tn = ria(t
n) (17)

xi − xb = ti + M−1(ma(vbi + 1)− mbvai )t
n = rib(t

n) (18)

The potential energy also has three parts but these will be
treated together for the time being as:

V(t) = e2

8πε0

N∑

i, j=1

′ 1

ri j (R)
+ e2

4πε0

Za Zb

R

− e2

4πε0

N∑

j=1

(
Za

ria(R)
+ Zb

rib(R)

)
(19)

where R = |tn| and ri j (R) = |ri j (tn)| and similarly for the
other distances.

The translationally invariant angular momentum operator
may be written as

J(t) = h̄

i

(
t̂n ∂

∂tn +
N∑

i=1

t̂i
∂

∂ti

)
(20)

where ∂/∂tn denotes the 3 by 1 column matrix of first
derivatives and

t̂i =
⎛

⎝
0 −tzi tyi

tzi 0 −txi

−tyi txi 0

⎞

⎠ (21)

In future a position operator symbol with a caret over it will
denote a skew-symmetric matrix of components like (21).

2.2 A form invariant under orthogonal coordinate
transformations

Let the internuclear distance vector be written in the polar
coordinates (R, β, α) where tn

z = R cosβ. Then the orthog-
onal matrix

C =
⎛

⎝
cosβ cosα − sin α sin β cosα
cosβ sin α cosα sin β sin α
− sin β 0 cosβ

⎞

⎠ (22)

is such that

rn = CT tn =
⎛

⎝
0
0
R

⎞

⎠ (23)

and the remaining cartesian variables may be transformed to
variables in the frame defined by C as

ri = CT ti , i = 1, 2, . . . N (24)

We can now eliminate the derivatives with respect to tn
γ , γ =

x, y, z in favour of those with respect to R, β and α. Follow-
ing [6] this yields

∂

∂tn
γ

= Cγ x

R

(
∂

∂β
− i

h̄
ly

)

+Cγ y

R

(
cscβ

∂

∂α
−cot β

i

h̄
lz + i

h̄
lx

)
+Cγ z

∂

∂R
(25)

Here

l =
N∑

i=1

l(i) = h̄

i

N∑

i=1

r̂i
∂

∂ri
(26)

The operator l is composed of the three components of the
electronic angular momentum expressed in the frame defined
by C.
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Equation (25) may be rewritten as

∂

∂tn = C
∂

∂R

where ∂/∂R denotes the 3 by 1 column matrix of the
components on the right of (25). In the same notation

∂

∂ti
= C

∂

∂ri
(27)

When expressed in internal coordinates, the operators ∂/∂tn

and ∂/∂ti do not commute so the ordering of operators shown
in (14) must be maintained.

The total translationally invariant angular momentum
becomes

J(t) = |C|C
(

h̄

i
r̂n ∂

∂R
+ l

)
= |C|CJ(r) (28)

and since C is a proper rotation then |C| is +1 and may be
ignored in what follows.

The components of the total angular momentum expressed
in the frame defined by C are

Jx (r)=− h̄

i
cscβ

∂

∂α
+cot β lz, Jy(r)= h̄

i

∂

∂β
, Jz(r)= lz

(29)

In what follows these components will be denoted simply as
Jγ and called the components of pseudo-angular momentum
because of their unusual form and because they do not satisfy
standard commutation conditions.

The translationally invariant kinetic energy operators can
now be rewritten in terms of the new coordinates. The elec-
tronic part (11) becomes

Ke(t) →− h̄2

2m

N∑

i=1

∇2(ri )− h̄2

2

N∑

i, j=1

1

µi j

�∇(ri ) · �∇(r j ) (30)

The nuclear part (13) becomes

Kn(tn) → − h̄2

2µab R2

∂

∂R
R2 ∂

∂R
+ 1

2µab R2 D1(α, β, r) (31)

and the interaction part (14) becomes

Ken(tn, t) → h̄

i

(
∂

∂R

)
vz + 1

2R
D2(α, β, r) (32)

where the velocity operator is

v = h̄

i

N∑

j=1

1

µ j

�∇(r j ) (33)

This operator is unchanged by a change of nuclear variable
labeling because such a change induces a change of C to −C
and hence of ri to −ri .

The operators Di depend only on the Eulerian angles
and their derivatives and the electronic coordinates and their
derivatives. They may be written in many different ways.

Using the angular momentum operators, for example, they
become

D1(α, β, r)=
[
(Jx − lx )2 + (Jy − ly)2 + h̄

i
cot β(Jy − ly)

]

and

D2(α, β, r) = 2h̄

i
vz +

(
Jy − ly + h̄

i

cot β

2

)
vx

+vx

(
Jy − ly + h̄

i

cot β

2

)

+(Jx − lx )vy + vy(Jx − lx ))

but other forms may be found in [6,7] and in [8] for instance.
For the time being however no particular choice need be
made. In working with D2(α.β, r) the order of the operators is
important because the electronic operators do not commute.

The potential energy operator remains just as is given in
(19) but will from now on be written as V(R, r) to emphasize
that it does not depend upon the orientation of the internu-
clear axis.

The full Hamiltonian for the problem H(R, r) is then just
the sum of the right sides of (30), (31), (32) and (19) and the
volume element for integration is

R2 sin βd Rdβdαdr

Using standard angular momentum results, the angular
motion can be dealt with by choosing a solution of the form


J
pmn(α, β, R, r) =

√
1

2π
einα

√
2

2J + 1
d J

nm(β)ψ
J
pm(R, r)

(34)

where d J
nm is a term in a standard rotation matrix element

as defined in [9] or equivalently in [10]. The subscript p on
the wave function ψ J

pm will be left uninterpreted for the time
being. Denoting the normalisation factor in (34) by NJ and
withψ J

pm chosen to be an eigenfunction of lz with eigenvalue
h̄m then

D1

J
pmn → −h̄2 NJ einα

[
d J

nm(β)(m(m + 1)− J (J + 1)− l+l−/h̄2)

+ c+
Jmd J

nm+1(β)l
+/h̄ + c−

Jmd J
nm−1(β)l

−/h̄
]
ψ J

pm

(35)

and

D2

J
pmn → h̄

i
NJ einα

[
d J

nm(β)(v
+l− − v−l+)/h̄

− c+
Jmd J

nm+1(β)v
+ + c−

Jmd J
nm−1(β)v

−]
ψ J

pm

(36)

with

c±
Jm = [J (J + 1)− m(m ± 1)] 1

2 (37)
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The operators l± are the standard raising and lowering
operators and the v± are defined just like l± but using the
components of the velocity operator. It should noted that the
phase conventions adopted here are not the same as those
used in [7] so that there are some sign differences between
this work and that.

Although l2 does not commute with the Hamiltonian it
would be possible to require that the trial wavefunction be
an eigenfunction of l2 and if this were done then explicit
expressions could be obtained for the effects of the raising
and lowering operators, but to do so would constrain the form
of wavefunction too strongly for our purposes.

The angular motion can be dealt with by multiplying each
of (35) and (36) from the left by
J ′

p′m′n′ and integrating over
the angular coordinates. The resulting matrix elements are
diagonal in n and J but, to save writing, this will not be
explicitly noted and the index n will be suppressed in what
follows because, in the absence of fields, the energy does not
depend on n.

The matrix elements of the effective Hamiltonian diagonal
in m for any p′p choice are

Hp′m,pm = He
p′m,pm + 1

2i R
〈ψ J

p′m |(v+l− − v−l+)|ψ J
pm〉

+ h̄2

2µab R2 〈ψ J
p′m |J (J + 1)− m(m + 1)|ψ J

pm〉

+ 1

2µab R2 〈ψ J
p′m |l+l−)|ψ J

pm〉

+ h̄

i
〈ψ J

p′m |
(
∂

∂R

)
vz |ψ J

pm〉

− h̄2

2µab R2 〈ψ J
p′m | ∂

∂R
R2 ∂

∂R
|ψ J

pm〉 (38)

where

He
p′m,pm = − h̄2

2m

N∑

i=1

〈ψ J
p′m |∇2(ri )|ψ J

pm〉

− h̄2

2

N∑

i, j=1

1

µi j
〈ψ J

p′m | �∇(ri ) · �∇(r j )|ψ J
pm〉

+〈ψ J
p′m |V(R, r)|ψ J

pm〉 (39)

while the matrix elements off-diagonal in m are

Hp′m+1,pm

= −c+
Jm

〈
ψ J

p′m+1|
(

h̄

2µab R2 l++ h̄

2i R
v+

)
|ψ J

pm

〉
(40)

Hp′m−1,pm

= −c−
Jm

〈
ψ J

p′m−1|
(

h̄

2µab R2 l− − h̄

2i R
v−

)
|ψ J

pm

〉
(41)

For any fixed choice of p and p′ this system of equations gen-
erates a 2J + 1 dimensional secular problem which
determines 2J + 1 eigenvalues J E p,p′,t .

3 Isolating the electronic motion

From (39) the Hamiltonian

He = − h̄2

2m

N∑

i=1

∇2(ri )− h̄2

2

N∑

i, j=1

1

µi j

�∇(ri ) · �∇(r j )

+V(R, r) (42)

can be extracted. Let us call this Hamiltonian the fixed frame
electronic (FFE) Hamiltonian. Notice it is perfectly possible
to specify R as a constant in this Hamiltonian, effectively
clamping the nuclei, without requiring that the nuclear masses
increase without limit. Were the nuclear masses to increase
without limit the second kinetic energy term, the so-called
mass-polarization term, would vanish. It is not, however,
quite the usual clamped nuclei one. Because we have chosen
to discuss a diatomic and thus required that the electronic
function is an eigenfunction of lz there is an extra restriction
on the form of the electronic wavefunction. This restriction
would not arise in the general case and can be regarded as a
matter of no importance. There are however other reasons:
the presence of the mass-polarization term and the possible
presence of the nuclear variable R in the electron-repulsion
term. The mass-polarization term could certainly be included
by a simple extension of the usual numerical apparatus of a
standard fixed nuclei calculation and, in any case, is probably
a small term and so can be treated as a perturbation. So no
issue of principle is involved here but the nuclear variable
problem is more tricky.

Looking at the inter-electronic distance formula (16) it is
seen that the internuclear distance will disappear if the choice
vai = vbi for all i is made. In the original work of Kołos the
electronic origin was taken at the mid-point of the internu-
clear separation so that this condition was satisfied and thus

1

µi j
= 1

4µab
,

1

µ j
= mb − ma

2mamb
(43)

and

ti = xi − 1

2
(xa + xb) (44)

xi = ti + (mb − ma)

2M
tn + X (45)

so that

(xa − x j ) =
(

tn

2
− t j

)
, (xb − x j ) = −

(
tn

2
+ t j

)
(46)

and

ri j = |t j − ti |
The form of the inter-electronic distance is exactly thus the
same as it is in clamped nuclei calculations. Furthermore if tn

is treated as a constant specifying an origin, then the electron-
nucleus distances are of exactly the same form as in a clamped
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nuclei calculation. Thus in this case, provided that the mass
polarization term is ignored, the usual clamped nuclei elec-
tronic structure calculations can be fitted into the full problem
and this remains the case whenever the electronic origin is
chosen as the centre-of-nuclear mass.

Let us, however, consider the long-range behaviour of the
electron-nucleus potential terms here. As tn becomes very
large, the nuclear repulsion term becomes very small and,
for any fixed values for the ti , the electron-nucleus attraction
terms become small too, while the electronic repulsion terms
remain constant. Thus the asymptotes of the problem so for-
mulated are a pair of bare nuclei with the ionized electrons
referred to a point midway between them. This is clearly
not the sort of asymptote for which one is likely to be look-
ing in a potential surface calculation. This is also general.
If the translationally invariant electronic coordinates are set-
tled, that is, if they are left unchanged by change of nuclear
variables, then individual “atoms” will not emerge at the
asymptotes from a set of the nuclei with the same masses.

To let a pair of neutral atoms emerge at the asymptotes it
would be reasonable to define the vai and vbi so that

t′i = xi − xa, i = 1, 2, . . . , Za
(47)

t′i = xi − xb, i = Za + 1, . . . , N

The translationally invariant electronic coordinates so defined
are not settled under nuclear permutations. The inverse of this
transformation for the nuclei is as above in (9) while that for
the electrons is

xi = t′1 + mb

M
tn + X, i = 1, 2, . . . , Za

xi = t′2 − ma

M
tn + X, i = Za + 1, . . . , N

If i and j are in different clusters then

(xi − x j ) =
(

t′i − t′j ± tn
)

so that the inter-electronic part of the potential has a
dependence upon the translationally invariant nuclear coor-
dinates. The coordinates of the electron-nucleus attraction
terms take the form:

(xi − xa) = (t′i ), (xi − xb) = (t′i + tn)

if i is in the first cluster and

(xi − xb) = (t′i ), (xi − xa) = (t′i − tn) (48)

if i is in the second cluster. It is easily seen that this choice
does allow the dissociation into a pair of separate atoms but at
the cost of making the electronic repulsion term dependent
upon what is formally, a nuclear variable and also of con-
siderably complicating the description of the permutational
symmetry of the electrons. Again, clamping the nuclei would
not avoid this difficulty. It would simply make tn a constant.
Thus with this choice it would not be possible to match the

electronic part of the Hamiltonian found here to the usual
clamped nuclei electronic Hamiltonian.

The two sets (45) and (48) of translationally invariant
coordinates are related by

t′i = ti − 1

2
tn, i = 1, 2, . . . , Zb

(49)
t′i = ti + 1

2
tn, i = Zb + 1, . . . , N

and obviously, any wave function obtained in one set of
coordinates can be re-expressed, though perhaps not at all
conveniently, in the other. This establishes that the exact
solutions to the problem expressed in either set of coordinates
yield the same energies, provided that the same boundary
conditions are imposed, in spite of having different looking
wave functions. There is therefore, absolutely nothing faulty
in the mid-point choice of origin. If exact solutions to the
problem were available with this coordinate choice, among
them would be the almost-separated atom ones, it is just that
their formulation would involve a complicated mixture of
electronic and nuclear coordinates and thus they would not
easily be approximated by trial functions in product form.

Although our discussion has been limited to the diatomic,
the results can be generalized. If in a polynuclear system,
the electronic origin is taken at the centre of nuclear mass, it
can be shown [11] that it is always possible to write an FFE
Hamiltonian like (42) and that the interparticle distances can
be mapped onto those in the ordinary clamped nuclei Hamil-
tonian, just as in the centre-of-mass choice for the diatomic.
But the behaviour of the coordinates at large internuclear dis-
tances exhibits the same problems as in the diatomic. Choices
of electronic coordinates to get round these problems, while
preserving the form of the kinetic energy terms in the FFE,
make a similar mapping of the potential terms, impossible.

This discussion shows is that it is not possible to write
a translationally invariant Hamiltonian in terms of a set of
coordinates which are settled so as to distinguish between
electronic and nuclear variables and which also allow its
asymptotic behaviour to be physically plausible. This would
still be the case if the nuclei were distinguishable, so that
nuclear permutations need not be considered.

4 The spatial part of the wavefunction

Whatever the precise choices made for the electronic
coordinates it is natural to look for a solution to the spa-
tial part of the problem in terms of an expansion of products
of the form

ψ J
pm(R, r) = χ J

pm(R, r)ηJ
ps(R) (50)

where R can be treated as a a parameter in the construction
of χ J

pm and then be treated as a variable in the construction of
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ηJ
ps . So p may be regarded as part-specifying the electronic

state of the problem while m must also appear in the elec-
tronic part of the solution because the electrons must carry
the z-component of the angular momentum to complete the
electronic state specification. The subscript s on ηJ

ps allows
for “vibrational” states within a given electronic state.

Before attempting to specify coordinate choices more
closely consider the construction of the matrix elements (38),
(40) and (41) using product functions (50), generalizing
somewhat the pioneering discussion of Kołos [12]. This will
be done in two stages, as usual, first integrating over the elec-
tronic variables to give an effective Hamiltonian in terms of
the nuclear variable R.

Hp′m,pm → Hnuc
p′m,pm =

− h̄2

2m

N∑

i=1

〈χ J
p′m |∇2(ri )|χ J

pm〉

− h̄2

2

N∑

i, j=1

1

µi j
〈χ J

p′m | �∇(ri ) · �∇(r j )|χ J
pm〉

+〈χ J
p′m |V(R, r)|χ J

pm〉

+ h̄2(J (J + 1)− m(m + 1))

2µab R2

〈χ J
p′m |χ J

pm〉 + 1

2µab R2 〈χ J
p′m |l+l−|χ J

pm〉

− h̄2

2µab

〈
χ J

p′m |χ J
pm

〉 (
∂2

∂R2 + 2

R

∂

∂R

)

+ h̄

i

〈
χ J

p′m |vz |
(
∂

∂R
χ J

pm

)〉
+ h̄

i
〈χ J

p′m |vz |χ J
pm〉 ∂

∂R

+ 1

2i R
〈χ J

p′m |(v+l− − v−l+)|χ J
pm〉

− h̄2

2µab

(〈
χ J

p′m |
(
∂2

∂R2 χ
J
pm

)〉

+2

〈
χ J

p′m |
(
∂

∂R
χ J

pm

)〉(
1

R
+ ∂

∂R

))
(51)

while

Hp′m+1,pm → Hnuc
p′m+1,pm

=−c+
Jm

〈
χ J

p′m+1|
(

h̄

2µab R2 l+ + h̄

2i R
v+

)
χ J

pm

〉
(52)

Hp′m−1,pm → Hnuc
p′m−1,pm

=−c−
Jm

〈
χ J

p′m−1|
(

h̄

2µab R2 l− − h̄

2i R
v−

)
χ J

pm

〉
(53)

where the implied integrations are over the electronic coor-
dinates only. To elucidate more fully what is involved in this
integration the construction of the electronic wavefunctions
must be considered.

4.1 The electronic Hamiltonian

In the usual treatment of the electronic states of a diatomic
molecule (see Chapter 11 [13]) is taken as one with cylindri-
cal symmetry and the full spherical symmetry of the problem
is ignored. In this restricted formulation the states with m = 0
are not degenerate while states with m = ±|m| form doubly
degenerate pairs. Clearly m = 1 states are possible only if
J ≥ 1 and so on, but the role of J is not usually emphasized.
In a full approach, for any given J the 2J + 1 possible states
specified by m can form a non-degenerate set.

Consider the FFE Hamiltonian: in rectangular Cartesian
coordinates ri has components xi , yi and zi where the
z− axis lies along the internuclear axis which is oriented
from b to a. Since |C| is positive, the coordinate system is
a right-handed one if the original choice was a right handed
one. Cartesians are the natural coordinate choice for perform-
ing clamped-nuclei calculations but they are difficult to use
in the present context for it is not easy to construct eigen-
functions of lz in terms of them. If ri is realized in spherical
polars ri , θi and φi then

lz( j) = h̄

i

∂

∂φ j
(54)

and so the electronic wavefunction with m as the z−
component of angular momentum can be written as

χ J
pm(R, r)=P[χ J

pm(R, r, θ, ε) exp(imφ)], φ = 1

N

N∑

j=1

φ j

(55)

where r and θ (without subscripts) denote the variables col-
lectively and ε denotes the variables εi = φi − φi+1 with
i = 1, 2, . . . , N − 1 collectively. P denotes the symmetric
group projection operator that produces a spatial function of
the correct permutational symmetry for the chosen electron
spin eigenfunction. The volume element for integration is

dr =
N∏

j=1

r2
j sin θ j dr j dθ j dφ

N−1∏

j=1

dε j

It is possible to eliminate ri and θi in the electronic func-
tion in favour of other coordinates. The so-called “elliptical
coordinate” system (properly called prolate spheroidal) is
the most widely used choice in accurate electronic structure
calculations within the clamped nuclei approximation, and
is used in [14]. In this set, however, the interparticle distance
(here R) is a parameter that defines the coordinate system
and not a variable so some care must be taken if such a coor-
dinate system is used, as it was [7]. It would however be easy
to change to cylindrical coordinates as used by Hilico et al.
[15] because the choice

z = r cos θ, ρ = r sin θ (56)
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can be made. But these choices all yield a common form
in the second derivative term involving the φi in the kinetic
energy operator, namely

N∑

i, j=1

fi j
∂2

∂φi∂φ j

in which the multiplicative operator fi, j does not involve the
coordinates φi . Thus in the case of the choice of spherical
polars

fi j = −
(
δi, j

h̄2

2m
+ h̄2

2µi j

)
1

rir j sin θi sin θ j
.

It is then easy to see that this part of the kinetic energy oper-
ator operating on the trial function defined in (55) results in
the term

−
( m

N

)2 N∑

i, j=1

fi jχ
J
pm(R, r)

and that the electronic energy at any fixed value of R will
be non-degenerate if m = 0 but otherwise will be doubly
degenerate just as if the problem had cylindrical symmetry.

Once again it should be stressed that it is not the coor-
dinate choice for the Hamiltonian that matters, the funda-
mental properties of the Hamiltonian are quite independent
of any proper coordinate choice, it is the ability to construct
an appropriate trial function in terms of a particular choice
of coordinates. So provided that an eigen-function of lz is
chosen as a trial function, the electronic Hamiltonian can
be formulated in rectangular Cartesian coordinates if that is
most convenient for computational purposes.

If the internuclear midpoint is chosen as the electronic ori-
gin and if R is chosen to be constant Re, then the standard
clamped-nuclei form for the potentials can be recovered by
treating the electron-nucleus separation coordinates (46) as
if the nuclei were placed symmetrically along the z−axis
at ±Re/2. If atomic orbitals are centered on the nuclei and
they are expressed in local spherical polar coordinates with
azimuthal angular part

eisφai and eisφbi

then it is easy to show that any linear combination of such
atomic orbitals is an eigenfunction of lz(i) just as long as the
quantum number s is the same on each centre. So it would
be perfectly legitimate to perform standard LCAO-MO cal-
culations using the ordinary clamped nucleus approximation
to obtain trial electronic wave functions with this choice of
electronic origin. If would also be legitimate to do clamped
nuclei calculations with any other proper choice of electronic
origin but the clamped nuclei electronic Hamiltonian with
such choices could not be mapped onto the ordinary clamped
nuclei electronic Hamiltonian.

4.2 Electronic correction terms

Consider (51) for the case p′ = p, m′ = m, take the elec-
tronic wave functions to be normalised to unity and treat the
terms involving the velocity operator and derivatives of the
electronic wave function with respect to R as a remainder
operator Erem

pm (R). The expression is then:

− h̄2

2m

N∑

i=1

〈χ J
pm |∇2(ri )|χ J

pm〉+〈χ J
pm |V(R, r)|χ J

pm〉

− h̄2

2

N∑

i 	= j=1

1

µi j
〈χ J

pm | �∇(ri ) · �∇(r j )|χ J
pm〉

+ 1

2µab R2 〈χ J
pm |l+l−|χ J

pm〉

+ h̄2(J (J + 1)−m(m+1))

2µab R2 − h̄2

2µab

[(
∂2

∂R2 + 2

R

∂

∂R

)]

+ Erem
pm (R) (57)

with

1

m
= 1

m
+ 1

µi i

For calculations at a fixed value of R, evaluating the first two
terms yields a quantity E ffn

pm(R) which will be just the sum
of an electronic and a classical nuclear repulsion energy for
electrons of mass m. In standard calculations this is regarded
as a point on the clamped nuclei potential curve for nuclear
motion. The classical nuclear repulsion energy plays no part
in determining the trial wavefunction nor the electronic
energy of the system. It simply provides an energy origin.
This energy origin increases with out limit as R tends to 0
but the wave function for the system will tend to a wavefunc-
tion for the united atom and the electronic energy towards
that for the united atom too. Of course the state of the united
atom that is approached will depend on the molecular state
itself. As R increases without limit so the inter-nuclear repul-
sion will vanish and the trial wavefunction will approach that
for two separate electronic entities each based on a particu-
lar nucleus. In general one might expect the state of low-
est energy to be that described by two separated atoms but
the separated entities would have to be such that their total
angular momentum would be J as defined by the molecular
system and the systems jointly would have to have a totally
antisymmetric electronic wavefunction.

Assuming that the function χ J
pm has been determined as

a good approximation at a point to a solution of the FFE
Hamiltonian, using it to construct an expectation value of
the next two terms will yield Edc

pm(R) which will provide a
“correction” to the potential analogous to the so-called “diag-
onal Born–Oppenheimer” (DBOC) correction [16] in stan-
dard calculations. The expected value of the first term should
change perfectly smoothly between R = 0 and R → ∞ but
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the second term is problematic as R → 0. Suppose that the
electronic trial function is chosen to be an angular momen-
tum eigenfunction with value j ≥ m then the expected value
of the second term is

h̄2

2µab R2 ( j ( j + 1)− m(m − 1))

However, as R → 0 and the trial function approaches that of
the united atom so it gets closer to being an angular momen-
tum eigenfunction for the united atom and, calling this j ,
then unless j = 0 or j = m − 1, this term is divergent. This
divergence is not a physical one, it arises simply because of
the way that the problem has been split up and it may prevent
the use of this term as a correction when R becomes small.
The term should vanish as R becomes large.

It is not clear to what extent these observations should gen-
eralize to a polynuclear molecule because in the polynuclear
case there would be no explicit dependence on the angular
momentum in the electronic wavefunction, as there are no
explicit angular momentum terms in the FFE Hamiltonian
and there will be no explicit coupling of the kind that occurs
in the diatomic via the m value.

The next two terms specify nuclear motion, the first of
them with an angular momentum dependent modification
of the potential, and can be used to construct approximate
nuclear motion functions ηJ

ps(R) with the calculated poten-
tial. There will be analogous terms in the polynuclear case
[11]. The rotational part will reflect the general asymmetric
top form of a polynuclear system and the kinetic energy part
will involve all 3A − 6 internal coordinates.

The remainder term can then be estimated to first order
by calculating the expected value of Erem

pm (R) with the trial
function so obtained. For a homonuclear diatomic with the
electronic origin chosen at the nuclear midpoint the veloc-
ity operator vanishes and it might be hoped that this opera-
tor was anyway of small effect. It should be noticed that the
remainder term does give rise to an extra kinetic energy oper-
ator which could be of significant effect were the electronic
“overlap” term by which it is multiplied, to be large. Again
analogous terms arise in the polynuclear system.

The terms (52) and (53), which can arise even when p= p′,
will couple the various m states that have electronic parts
determined as solution of the FFE Hamiltonian.

Thus, provided that one uses a suitable coordinate system
and does not attempt to consider states in which R becomes
very small it would seem perfectly possible to perform well
defined calculations on the diatomic molecule by separat-
ing the nuclear and electronic motions. However, it is not
possible simply to treat a potential Ecn(R) obtained from a
solution of the problem specified by the standard clamped
nucleus Hamiltonian (4), as if it were E f f n(R) as arising
from the first two terms of (57). For a given nuclear geome-
try, the Hamiltonian (42) has the same spectrum as that of (4)

only if the nuclear masses are treated as increasing without
limit. It is not therefore, in general, possible to treat the elec-
tronic wave functions and energies arising from (4) as part
solutions to the problem as specified by the full Hamiltonian.
However, since the electronic mass may be treated as a scale
factor in finding solutions to (4), the resulting wave functions
may be scaled to a correspond to a mass value appropriate
to the problem as specified by a particular internal coordi-
nate choice. These scaled functions can then be used as trial
functions to compute E f f n(R) and Edc(R) as defined by
the Hamiltonian with this coordinate choice. Thus although
it is not possible to specify uniquely to which question the
standard clamped nucleus Hamiltonian (4) is the answer, it is
possible to use it properly in the context of a fully specified
internal motion Hamiltonian.

5 Conclusions

Even in the case of diatomic molecules there is clearly still
a need for careful computational work to yield results to
compare with the increasingly accurate experimental work
on molecular spectra. Although the contributions of Serafin
Fraga to the field were not in this area, I remember stimulating
discussions with him of interesting problems in other areas
of quantum chemistry. I hope that he would have been stimu-
lated by the discussion that I have offered here in his memory.
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